Prepared for

Narragansett Bay
Commission

Outline Stakeholder process review Alternatives development & screening review Evaluation criteria CSO needs analysis & hydraulic model results Alternatives analysis: Subsystem delineations Alternatives evaluation by subsystem Alternatives analysis conclusions

> Alternatives Development

April 10, Grey Infrastructure Focus

 May 22, Green Infrastructure Focus

➤ Alternatives Evaluation

- June 19, Evaluation Criteria Focus
- September 4, Alternatives Analysis Workshop

➤ Plan Definition

- October 23, IPF, Project Prioritization & Sequencing
- November, Plan Finalization

Alternatives development & screening review Evaluation criteria CSO needs analysis & hydraulic model results Alternatives analysis: Subsystem delineations Alternatives evaluation by subsystem Alternatives analysis conclusions Alternatives Development & Screening

BUILDING A BETTER WORLD

CSO Mitigation Strategies

➤ Source

Stormwater controls

Green Stormwater Infrastructure (GSI)

> Pathway

Stormwater storage

Sewer separation

Regulator modifications

Interceptor relief

> Receptor

Treatment & discharge

Near surface storage

Deep tunnel storage

Alternatives Technical Feasibility Screening

	Source		ource Pathway		Receptor								
Outfall	No GSI	Public Way GSI	Full GSI	Sewer Separation	Hydraulic Control & Stormwater Storage	Regulator Modification	Interceptor Relief	Satellite Treatment & Discharge	Near Surface Storage	Wetland Treatment	Pawtucket Stub Tunnel		Main Spine Tunnel
35	1	✓	1	4	4								
36	~	1	1			✓							4
39	~	✓	1	✓			✓				\square		
56	✓	✓	~	✓			✓				✓		
101	✓	✓	~			$\overline{\mathbf{Z}}$			✓			✓	
103	✓	✓	1						✓			✓	
104	✓	✓	1						✓			✓	
105	✓	✓	1						✓			✓	
107	✓	✓	1			✓						✓	
201	✓	✓	1					Ø	✓			✓	
202	✓	✓	1			\blacksquare		Ø	✓			✓	
203	✓	✓	1					Ø	✓			✓	
204	✓	✓	1					Ø	✓			✓	
205	✓	✓	1					Ø	✓			✓	
206	✓	✓	1	✓	✓	✓			✓			✓	
207	✓	✓	1			✓			✓			✓	
208	✓	✓	1			✓			✓			✓	
209	✓	✓	✓			✓			✓			✓	
210	✓	✓	✓						✓			✓	
211	✓	✓	1						✓			✓	
212	*	✓	✓			✓		Ø	✓			✓	
213	/	✓	✓						✓			✓	
214	✓	✓	✓						✓			✓	
215	*	✓	1			✓		Ø	✓			✓	
216	✓	✓	1			✓		Ø	✓			✓	
217	✓	✓	✓					✓	✓			✓	
218	~	1	✓					Ø	✓			✓	
220	✓	✓	✓					Ø	✓		✓	✓	

Satellite Treatment & Discharge – Screening & Disinfection

- > Insufficient data to confirm technical feasibility of Ultraviolet disinfection
- > UV disinfection effectiveness dependent upon light transmission through water
- ➤ UV typically requires pretreatment increases footprint, cost & operations
- Chlorination has same toxic residual & chemical handling risks noted during previous stakeholder process
- ➤ Paracetic acid is an emerging alternate disinfection technology requiring piloting and special approval
- > Regulatory issues
 - Discharge limits
 - Water quality

Alternatives development & screening review **Evaluation criteria** CSO needs analysis & hydraulic model results Alternatives analysis: Subsystem delineations Alternatives evaluation by subsystem Alternatives analysis conclusions **Evaluation Criteria**

BUILDING A BETTER WORLD

Evaluation / Prioritization Criteria

➤ Categories ➤ Weights

o Environmental o 35%

o Economic o 30%

o Social o 18%

o Implementation o 17%

Environmental Criteria

Weight	Evaluation Criteria	Description
40%	Water quality (bacteria) impacts	Changes in bacteria loading to receiving waters including the Bay and contributing rivers, largely associated with sanitary and combined overflows
20%	Flooding risks from stormwater systems	Changes in localized and regional flooding produced by modifications to stormwater management and conveyance infrastructure
20%	Water quality (nutrients) impacts	Changes in nutrient (nitrogen & phosphorus) loading to receiving waters including the Bay and contributing rivers, largely associated with stormwater discharges
20%	Scalability & adaptability	Ability to increase or modify flow handling or treatment capacity to accommodate future water quality requirements or design storm intensities
	Water quality (toxics & exotic) impacts	Changes in other pollutant loadings (e.g. metals in stormwater, emerging contaminants in sanitary, and toxic residuals from CSO disinfection) to receiving waters
	Non-Aquatic environmental impacts	Energy, heat island, carbon sequestration and other non-water-based environmental attributes

Economic Criteria

Weight	Evaluation Criteria	Description
45%	Capital costs	Initial costs and expenses including construction, engineering, administration and financing
25%	Operations & Maintenance costs	Continuing costs including administration, labor and materials for regular operations, maintenance and planned rehabilitation
10%	Constructability / Construction-phase risks	Complexity, dependency on unknown conditions (e.g. geotechnical) or external requirements (e.g. land acquisition) that could significantly impact capital costs
10%	Cost per gallon captured	Attribute of capturing large volumes or providing substantial benefits from a single, efficient or cost effective solution
10%	Operational flexibility for optimization	Ability to modify system performance to meet water quality goals without requiring capital projects for system alterations or additions
	Support economic development	Ability to provide short-term stimulus from construction jobs, long-term creation of O&M jobs, or support of real estate development through infrastructure
	Regional partnering potential	Potential for cost-sharing with municipalities, agencies, land owners or interest groups through public or private partnerships
	Renewal of existing infrastructure	Coincidental replacement of aging infrastructure that will otherwise require rehabilitation within the planning period

Social Criteria

Weight	Evaluation Criteria	Description
35%	Fishable, shellfishable & swimmable waters	Support of additional water-based improvements that increase the fishing, shellfishing and swimming potential of the area waters
25%	Co-benefits & quality of life	Ability to facilitate coincidental improvements to other infrastructure (e.g. streetscape, greenspace, recreational) that impact quality of life or public health
20%	Operations & maintenance impacts and risks	Odor, noise, traffic, contamination and other impacts to residents, businesses and the environment from normal operations and emergency conditions
20%	Construction-phase disruptions	Acute, short-term impacts such as traffic, noise, dust, vibration and service interruptions to residents and businesses in project areas
	Level of sanitary service	Impacts to sanitary service (e.g. frequency or severity of back ups, odor control, etc.)
	Urban renewal and environmental justice	Alignment with other initiatives to improve low income and blighted areas
	Public image for NBC and the region	Potential for influencing the reputation of the region for intelligent infrastructure and environmental stewardship both internally and externally

Implementation Criteria

Weight	Evaluation Criteria	Description
40%	Administrative / Institutional considerations	Degree to which the responsible party for implementation is known and empowered to construct and operate the project/alternative at the time of evaluation
30%	System reliability / Operational robustness	Sensitivity of a system to changes in conditions and the degree to which it must be inspected and actively managed to operate correctly
30%	Climate change resiliency & recovery	Capacity for providing resiliency against climate change and reducing recovery costs associated with post-event recovery
	Implementation / phasing flexibility	Degree to which the project/alternative could be subdivided or combined with other projects/alternatives to achieve incremental progress toward overall goals

Weighted Evaluation & Prioritization Criteria

- Alternatives evaluation & selection
- Programcomponentprioritization
- > IPF project prioritization

Evaluation Criteria	Weighting	Factor
Environmental Criteria	35%	
Water quality (bacteria) impacts	40%	14.00%
Water quality (nutrients) impacts	20%	7.00%
Flooding risks from stormwater systems	20%	7.00%
Scalability & adaptability	20%	7.00%
Economic Criteria	30%	
Capital costs	45%	13.50%
Operations & Maintenance costs	25%	7.50%
Constructability / Construction-phase risks	10%	3.00%
Cost per gallon captured	10%	3.00%
Operational flexibility for optimization	10%	3.00%
Social Criteria	18%	
Fishable, shellfishable & swimmable waters	35%	6.30%
Co-benefits & quality of life	25%	4.50%
Operations & maintenance impacts and risks	20%	3.60%
Construction-phase disruptions	20%	3.60%
Implementation Criteria	17%	
Administrative / Institutional considerations	40%	6.80%
System reliability / Operational robustness	30%	5.10%
Climate change resiliency & recovery	30%	5.10%

Criteria Scoring

Evaluation	Score
Advantageous	10
	9
	8
	7
	6
Neutral / No change to 2014 condition	5
	4
	3
	2
	1
Disadvantageous	0

Alternatives Evaluation & Prioritization

Volume Captured:	
Evaluation Criteria	Factor
Environmental Criteria	
Water quality (bacteria) impacts	14%
Water quality (nutrients) impacts	7%
Flooding risks from stormwater systems	7%
Scalability & adaptability	7%
Economic Criteria	
Capital costs	14%
Operations & Maintenance costs	8%
Constructability / Construction-phase risks	3%
Cost per gallon captured	3%
Operational flexibility for optimization	3%
Social Criteria	
Fishable, shellfishable & swimmable waters	6%
Co-benefits & quality of life	5%
Operations & maintenance impacts and risks	4%
Construction-phase disruptions	4%
Implementation Criteria	
Administrative / Institutional considerations	7%
System reliability / Operational robustness	5%
Climate change resiliency & recovery	5%
Composite Rating & Ranking:	

	203, 204, 205		
13.37	13.37	22.01	
Drop shaft 205 & conduit	Front St Tank with GSI	Front St Screening & Disinfection	
10	10	5	
10	10	6	
5	6.5	5.0	
6	6.5	7	
8	2	1	
5	2	2	
7	7	7	
10	10	5	
5	7.5	2	
5	3	1	
4	2.5	2	
7	1.5	1	
8	2.5	1	
7	6	7	
6.3	5.1	3.3	

	056, 039	
0.88	0.88	0.88
039 Sewer separation	Hybrid GSI / Sewer separation	West River Interceptor
0.5	0.5	0.5
1	2	6
0	3.5	6
5	6.5	6
9	4	7
1	1	2
5	5.5	7
0.5	0.5	0.5
8	8.5	5
4	3.5	4
0	1.5	2
3	2.5	5
7	5	7
5	5.5	6
2.7	2.7	3.6

Alternatives development & screening review
Evaluation criteria

CSO needs analysis & hydraulic model results

Alternatives analysis: Subsystem delineations
Alternatives evaluation by subsystem

Alternatives analysis conclusions

NBC Phase III Needs Analysis & Hydraulic Model

BUILDING A BETTER WORLD

Developing GSI Opportunities

Step 1

•Opportunity - GIS based assessment of open spaces that could accommodate GSI solutions

Step 2

•Land Use - Review of land use to ensure current and planned uses fit in with GSI proposals

Step 3

 Legislation - Consideration of legislative barriers and drivers; are there and planning restrictions that would prevent the use of GSI or drivers to support their use

Step 4

•Landform - Topography and soil conditions are there any likely prohibitions on the implementation of GSI techniques

Step 5

•Calculations - what area could be drained by the GSI proposals and what type of land take and controls will be required to manage flows

Step 6

• Effectiveness - do the opportunities and calculations assessments indicate that the GSI would be an effective solution

Step 7

•Scalability - can the GSI be replicated at a scale that would be useful and meaningful

Step 8

 Suitability - do the proposals fit into the local area, community and utility needs and wishes, avoiding long term negative legacies and vulnerabilities

Developing GSI Opportunities

Step 1

Opportunity – 602 Individual GSI opportunities identified across the Phase III CSO Service Area

Step 2

•Land Use – Following step two the number of identified opportunities reduced to 553

Step 3

•Legislation - Following step three the identified opportunities remained at 553

Step 4

•Landform - Following step four the number of identified opportunities reduced to 449

Step 5

•Calculations - Following step five the identified opportunities remained at 449

Step 6

•Effectiveness - Following step six the number of identified opportunities reduced to 349

Step 7

•Scalability - Following step seven the identified opportunities remained at 349

Step 8

•Suitability - Following step eight the final number of identified opportunities was 349

GSI Conceptual Designs

Private

- 1. Flat roof
- 2. Parking lot
- 3. Green space
- 4. Open space

Public

- 5. Parking lane
- 6. Median
- 7. Green space
- 8. Narrow street
- 9. Open space

Catchment-driven vs. Interceptor-driven

CSO Overflow / Underflow the balancing act

Branch Avenue Interceptor - Hydraulics

Incorporating GSI into Phase III

- ➤GSI could eliminate CSOs 209 and 216
- >All other outfalls require an accompanying grey solution
- Three major roles for GSI
 - ☐ Reduce the design capacity of grey infrastructure where site constraints are limiting (Part of today's alternatives analysis)
 - ☐ Optimize the design of the selected grey infrastructure alternatives based on a cost-benefit analysis (Part of October's plan refinement)
 - ☐ Provide additional control and flexibility in the future (Part of adaptive management for future designs and plan modification)

Alternatives development & screening review Evaluation criteria CSO needs analysis & hydraulic model results Alternatives analysis: Subsystem delineations Alternatives evaluation by subsystem Alternatives analysis conclusions **Alternatives Analysis:** Subsystem Delineation

BUILDING A BETTER WORLD

Phase III Baseline Subsystems

Design Capacity		
(MG)	CSO Control Solution	CSOs Controlled
0.77	035 Sewer separation	035
0.46	039 Sewer separation	039
0.42	056 Sewer separation	056
0.14	206 Sewer separation	206
5.26	Upper High & Cross St interceptor	101, 103
5.74	Lower High & Cross St interceptor	101, 103, 104
1.91	Middle St interceptor	201, 202, 203
22.27	Drop shaft 205 & conduit	101, 103, 104, 105, 201, 202, 203, 204, 205
7.21	Drop shaft 210/211 & conduit	207, 208, 209, 210, 211
3.24	Drop shaft 213 & conduit	213, 214
4.97	Pawtucket Ave interceptor	107, 220
7.68	Drop shaft 217 & conduit	107, 217, 220
14.76	Drop shaft 218 & conduit	212, 215, 216, 218
0.00	No Source control	
55.16	Baseline Pawtucket tunnel	101 - 107, 201 - 205, 207 - 220
	Regulator modification	101, 107, 202, 204, 207, 208, 209, 212, 214, 215

Phase III Alternatives Subsystems

Design Capacity	CCO Control Colution	CSOs Controllod
(MG)	CSO Control Solution	CSOs Controlled
0.77	Hybrid GSI / Sewer separation	035
0.46	Hybrid GSI / Sewer separation	039
0.42	Hybrid GSI / Sewer separation	056
0.14	Parking lot stormwater tanks	206
5.26	High Street Tank	101, 103
2.12	Webbing Mills Tank	104, 105
1.26	East Street Tank (Viper VoIP Corporation)	201, 202
8.97	Front St Tank / T&D with GSI	203, 204, 205
7.21	City Hall Tank	207, 208, 209, 210, 211
3.24	Apex (or other location) Tank	213, 214
4.97	Morley Field tank, or Stub tunnel	107, 220
2.71	Tidewater Tank / T&D	217
14.02	Bucklin Point landfil tank / T&D	212, 215, 216, 218
5.41	GSI in select sewersheds	039, 056, 201, 202, 203, 204, 205, 206, 209, 216
0.00	Tunnel	
	Regulator modifications	036, 101, 107, 204, 207, 208, 212, 215

After the Break... Subsystem Alternatives Evaluation

BUILDING A BETTER WORLD

